Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 895: 165133, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364839

RESUMO

Karst aquifers are important water resources for drinking water supplies worldwide. Although they are susceptible to anthropogenic contamination due to their high permeability, there is a lack of detailed knowledge on the stable core microbiome and how contamination may affect these communities. In this study, eight karst springs (distributed across three different regions in Romania) were sampled seasonally for one year. The core microbiota was analysed by 16S rRNA gene amplicon sequencing. To identify bacteria carrying antibiotic resistance genes and mobile genetic elements, an innovative method was applied, consisting of high-throughput antibiotic resistance gene quantification performed on potential pathogen colonies cultivated on Compact Dry™ plates. A taxonomically stable bacterial community consisting of Pseudomonadota, Bacteroidota, and Actinomycetota was revealed. Core analysis reaffirmed these results and revealed primarily freshwater-dwelling, psychrophilic/psychrotolerant species affiliated to Rhodoferax, Flavobacterium, and Pseudomonas genera. Both sequencing and cultivation methods indicated that more than half of the springs were contaminated with faecal bacteria and pathogens. These samples contained high levels of sulfonamide, macrolide, lincosamide and streptogramins B, and trimethoprim resistance genes spread primarily by transposase and insertion sequences. Differential abundance analysis found Synergistota, Mycoplasmatota, and Chlamydiota as suitable candidates for pollution monitoring in karst springs. This is the first study highlighting the applicability of a combined approach based on high-throughput SmartChip™ antibiotic resistance gene quantification and Compact Dry™ pathogen cultivation for estimating microbial contaminants in karst springs and other challenging low biomass environments.


Assuntos
Antibacterianos , Microbiota , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Bactérias/genética , Resistência Microbiana a Medicamentos/genética
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 298: 122811, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37156178

RESUMO

The increasing use of plastic materials has led to accumulation of large amounts of plastic waste in environment and a global challenge to be tackled with. The natural process of macro-plastics aging generates a multitude of secondary microplastic fragments accumulating in all areas of the planet. The pollution with microplastics of large water bodies, such as rivers, seas and oceans was already proven, but the presence of microplastics even in karst spring water was not reported yet. In this study, Raman micro-spectroscopy was used to confirm the presence of microplastics in the spring water samples collected from two rural karst springs in the Apuseni Mountains (Țarina and Josani), North-Western Romania. Two sets of water samples of 1000 L collected in spring time 2021 and one in autumn 2021 were filtered and analyzed. Using the Python programming language and combining two separate Raman databases, one for plastics and the other for pigments, we established a customized database to unambiguously identify the type of plastic and pigment present in the discovered micro-fragments. The generated reference pigment-plastic spectra were compared to those of potential microplastics found on filters and Pearson's coefficient was used to measure the level of similarity. The presence of microplastics in karst spring waters was confirmed and a quantitative estimation expressed as number of fragments or fibers per liter was 0.034 in Josani and 0.06 in Țarina karst spring. Five months later sampling (autumn 2021) revealed 0.05 microplastics per liter. The spectral results revealed that most microplastics found were dominated by polyethylene terephthalate (PET), followed by polypropylene and interestingly, abundant blue micro-fragments were identified according to their copper phthalocyanine pigments (pigment Blue 15) or indigo carmine (pigment Blue 63) characteristic spectral fingerprints, which surpassed the inherent spectral background level characteristic for the Raman spectra of naturally contaminated waste micro-samples. Their origin in mountain karst spring waters and potential decrease in time is discussed.

3.
Biodivers Data J ; 8: e53571, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581637

RESUMO

BACKGROUND: The increasing human impact in Romanian caves raises the urgency of publishing a correct database of the strictly-adapted cave fauna. Previous attempts at indexing cave fauna and classifying caves by using their fauna opened many questions regarding the use of an incomplete list of cave species and mixed lists of troglobionts/stygobionts with troglophiles/stygophiles for ranking caves with priority for protection. It has also become obvious that there is a need to publish a list of Romanian cave species that are under threat. Cave species in Romania (and elsewhere) are endemic on small ranges, are unique and must be considered as important units for conservation. A cave must be equally protected if it has one or more rare and strictly endemic cave species. Although not exhaustive, we here provide the first checklist of Romanian troglobionts/stygobionts developed in the framework of the DARKFOOD and GROUNDWATERISK projects, coordinated by the "Emil Racovita" Institute of Speleology, Cluj-Napoca, Romania. The GIS application was used to complement the checklist of cave species with data on caves and surface environments above the caves. Until complete data on species diversity and population sizes are made available for each cave, measures of conservation can be implemented, based on the presence/absence of cave species, while classifications of caves for protection, based on the number of species, must be avoided. We also propose a list of Romanian caves with fauna that are under threat and a tentative Red List of Romanian troglobiont/stygobionts. NEW INFORMATION: This is the first database with identified troglobiont and stygobiont species of Romania, with a critical analysis of their distribution inside the country. A list of caves that need protection for their rare and unique species and a tentative Red List of Romanian cave fauna are also added. A total of 173 species were identified, of which 77 troglobionts and 96 stygobionts are currently registered in 366 caves. The database is divided into two parts, one part with a list of troglobionts, their revised systematic position, cave name, cave code and geographic region; and the second part with the same information on stygobionts. The database represents the contribution of many active researchers, who are the authors of this paper and of review publications of many other authors of the "Emil Racovița" Institute of Speleology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...